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1 Introduction

Domain decomposition methods have recently become an efficient strategy

for solving large scale problems on parallel computers ([1], [2], [3], [4], [5],

[6]). Nevertheless, they can also be used in order to couple different models

[11], [18]. In this paper we will examine a domain decomposition strategy

which can be applied to such situations.

This approach was introduced in order to solve several difficulties that

occur in fluid mechanics. In particular, our aim is to introduce several sub-

domains in order to do one of the following :

• Solve different problems on each subdomain.

• Use different kinds of approximation methods on each subdomain [7].

• Use "local refinement techniques" or "mesh adaptive techniques", lo-

cally, per subdomaln ([10]).

The subdomalns fully overlap and the coupling is achieved through "fric-

tion" forces acting on the internal boundary of the domain, these friction

forces being updated by an explicit time marching algorithm.

Several versions of this methodology have been studied in [15]. In [15] the

emphasiz was on the implicit time discretization version of this algorithm,

we focus in this paper on the explicit version of this methodology. The

theoretical study of our method will be done on an Advection-Diffusion

problem, which will serve as our model problem. The analysis will be made

at the continuous level, independently of any (space) discretization strategy,

which means that the derived results will be mesh independent.

In the next section we develop a maximum principle for general second-

order elliptic problem based on the De-Giorgi-Nash theory. In section 2 and

3, we develop estimates for the solution of the convection-diffusion problems

respectively with Direchlet-Neumann and Direchlet boundary conditions.

These results are based on the maximum principle of section 2. We then

apply these tools to the analysis of an explicit time marching algorithm. We

also study a fixed point method for the implicit time marching algorithm of

[15]. Practical applications of the time marching algorithm to real life CFD

problems can be found in [141, [19], [20], and [21].



2 Local estimates

In this section we shall establish a maximum principle for an arbitrary elliptic

operator of second order. These tools are central to the development of

our theory in order to derive the convergence analysis of the explicit time

marching algorithm described in section (5.1).
Let L be an operator written under the form

Lu = a_J(x)D_ju + b_(x)D_ + c(x)u,

for any u in W2"_(_'/), with fl a bounded domain of ll_'_. The coefficients

a ij, b_ and c, i,j = 1,...,n are defined on _. As usual, the repeated indices
indicate a summation from 1 to n.

We suppose that the operator L is strictly elliptic in _ in the sense that

the matrix A of coefficients [a ij] is strictly positive everywhere in _. Let A

and A denote respectively the smallest and the largest eigenvalue of .A. Let
7) denote the determinant of the matrix .4 and 7)* = 7)1/'L We have

O< A_<7)*_<A.

We suppose in addition that the coefficients a ij, bi and c are bounded in _,
and that there exists two positive real numbers 7 and _ such that :

A/_ < 7, (L is uniformlyelliptic) (1)

(Ibl/_)2 < _. (2)

Now, we are in a position to state the principal result of this section,
proved in annex.

Theorem 2.1 Let u E W2'n(I2) and suppose that Lu > f with f E L'_(I2)

and c <_ O. Then for all spheres B = B2R(y) of center y and radius 2R
included in _2 and for all p > O, we have :

1 R

_< C _: [Ifll_,s}, (3)S'C£PBtc(_)U R{(_-_/B(_q-)P) lip q-

where the constant Ca depends on (n,7,_R2,p), but is independent of c.

Above u + = max(u, 0).



Remark 2.1 The statement of the same theorem can be found in [12], un-

der the assumption

lel/,_ _ _s. (4)

So, there the constant CR depends indirectly on c through i_. That is

exactly what we want to avoid, since we would like this constant to be inde-

pendent of c (see section 5.1).

3 First fundamental estimate

Let _ttoc be a connected domain of IR_ with _toc C _t (Figure 1). The
boundaries of the two subdomains are defined as follows:

Fb = O_ N O_ttoc, ( internal boundary)

Fi = 0_to_ N Ft, (interface)

Foo = O_\rb. (farfield boundary)

We denote by n the external unit normal vector to 0_t or O_ttoc.

Let V be a given velocity field of an inviscid incompressible flow such that:

divV = 0 in f/, (5)
V.n = 0 on Fb.

We shall derive an estimate for the solution of the following DirecMet-

Neumann problem:

1
£v = -rAy + V . Vv + -v in _, (6)

T

v = 0 on roo, (7)
Ov
0"-_ = g on rb, (8)

where the function g is given in H-1/2(Fb) and the coefficient r is strictly

positive, and v is the diffusion coefficient. Let W be the sub-space of Hl(_t)

defined by

W -- {w e Hl(n)l w -- 0 on Foo) (9)



We then define the following bilinear forms on W

a(v, w) = fn vVvVw + if div(Vv)w,

(v, w)= f_ _.

(10)

(11)

The first basic problem associated to (6)-(8), can be written as follows: Find

v E W satisfying :

a(v, w) + (1/r)(v, w) = frb gwdr, Vw e W, (12)

Moreover, we assume that the coefficients v and r satisfy the following
relation:

vr _< I. (13)

This hypothesis is not necessary but simplifies the proofs to come. More-

over, it is not restrictive, since we would like the convergence for small r
(see section 5.1).

Let d denotes the overlapping distance as described in the Figure 2. Let
then/7 be a real number such that

0 < _ < 3v/-_/d,

and set

k = n/(_v_).

The first basic result states the global H 1 estimate of the solution of the

first basic problem (12) in terms of the boundary data g.

Lemma 3.1 There exists a constant co such that we have:

Ilvlll,r_ < (col_')llgll_ll2,r_, (14)

Proof of lemma 3.1

By using the relation (5) we have the following equality:

/ vdiv(Vv) = 1/2_div(Vv 2)

= 1/2fr V.nv 2

= O, VvE W.
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Choosingw = v in (12), we then obtain

/a{uJVv]_ + (1/r)v 2} =/rbgv. (15)

From tiffs equality we deduce the following estimate:

_llvlJ_,_< Ilgll-1/2,rbllvlll/2,rb-

The application of the trace theorem yields the estimate (14), which implies
in particular

llvll0,____(col_')llgll-_l_,rb. (16)

Let _i be the subdomaln of width d with external boundary Fi as described

in the Figure 2. Let Ky = B_(y) be the sphere of center y and radius d.
There exist Yl,..., Yt belonging to £ti such that

_'_2i : UyE_i B_ (y) C U_= 1 gy.

We define then K by setting

l KK = Uj= 1 yj.

The next lemma states the local estimate of the solution v of the first basic

problem (12).

Lemma 3.2 There exists a constant Cl such that:

ll_lloo,g_<clllvllo,a. (17)

where cl is a constant depending only on _,,7, _d2 and (3/2d) "_12.

Proof of lemma 3.2

The operator

L = -£

satisfies the assumptions of the theorem 2.1, with c = -1/T and f = 0.

Applying then tiffs theorem with p = 2, y E £/i we obtain

II_lloo,Ky< c_ll_ll0,e_./_(y)-

5



Therefore
Ilvll_,K_,_<c_ll_llo,_,

where cl is a constant depending only on v, 7,/5d2 and (3/2d) '_12.

Applying the relation (18) to each K_ we obtain:

(18)

Setting Cl = sup
j=l,...,l

Ilvlloo,K_< sup _Jllvllo,n.
j=l,...,l

Clj, we finally have

Ilvlloo,K_<c_llVllo,n. (19)

And the lemma is proved.

We shall now establish other local estimates for the solution v of the first

second basic problem. For any Mi in 12i, we introduce (see Figure 2):

s B_ = the ball centered on M_ of radius all6,

• v_= exp[k(r2 - d2/36)]llvlloo,oB,.

We then have:

Lemma 3.3 The solution v of the first basic problem satisfies:

Iv(M_)l < exp(-kd2/36)llvllcc,OB,, VMi _ i2i. (20)

Proof of lemma 3.3

The operator /: applied to vi, can be written in polar coordinates (with
r= M_M) :

Lvi = 4(-k2vr 2 - kv + _V.e_r + )vi.

Therefore

We set then :

Lvi > 4(-k2vr 2 k 1_ - -_lV.e,lr + (_ - k_,))v_. (21)

_(r,k) = a(k)r _+ b(k)r+ c(k), (22)

with



a(k) = -k_v

b(k) = -_-Iv._l

1
c(k) - kv.

X l" 4r

We seek to satisfy the following relation :

d

0_<inf_(r,k) for 0_<r_<_.

As w(r, k) decreases on IR+ , this will be satisfied iff

_(d/_) _ O,

i.e. iff

k2vd 2 kdl]V][ 1
36 12 + _rr - k_, _> O.

We replace k by its value. Therefore, we have to satisfy

f12d2 _dlIVl[ 1 ilL,

(36vr) 12vx/_ + 47 vx/_ >- 0.

Multiplying by v_, it follows that

1 f12d2 d[IVll ).
4-_,_ (1 9v ) -> fl(1 + 12v "

The constraint fl < 3x/_/d, finally yields after division

1 dllVlllrI _ _2d_]__
_(_,k)>Oifr _>fl[l+ 12_' _ " (23)

From the relation (21) and the previous calculation, we deduce that for

< 3v_/d and r satisfying the above inequality, we have

Lv{ >_ 0 = Lv.



In addition, by construction

v_ > v on OBj.

Consequently, by using the maximum principle we obtain the following re-
lation :

In particular

v _< vi in Bi.

v(Mi) <_ exp(-kd2/36)[[vl[oo,oB,.

We do the same for -v, and finally we have

[v(Mi)l _<exp(-kd2/36)liv[Io_,os,, VM_ E _. (24)

Let _oo be defined by E/co = fl \ _loc. The next result establishes an H 1

estimate of the solution v of the first basic problem on the domain _oo.

Lemma 3.4 There exists a constant c2 such that:

Proof of lemma 3.4

Let ( E HI(_) be such that :

_ = 1 in _,supp_ C _i U _oo.

We have using (12):

div(Vv) + = 0.V/T)_2"U+

By using the Green's formula we deduce :

_-vAv(2v= f viV(_v)12-/nu[V_12v2.

1/2

(25)

(26)

(27)
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On the other hand, we have :

_ div(Vv)_2v= j[ div(V_2v2/2)-j[ V.V_v 2. (28)

Using the relations (27) and (28), (26) becomes

0 : / (_lv(_v)P + _v(V_v_/2) + p_/T)-/(_IV_P + _V- V_)

= /_,(IV(¢_)l= + I¢vl=)+,/(1/T-I.,)_2v 2- f (_,_=lV¢l=+ ==¢V.V¢)

= ]" .(iwl_+ivp)+]'o.(iv({_)p+i_l_)+_(1/_- .)_v_

Hence, we obtain :

_ijvji_,_+_, .(tv({_)j2+levi_)+_(1/.- .)¢_v2=

/_, (_v21v{I_+ _{v. v_).

The relation (13) then yields

_'ll_vll_,_u_,

If we take _ such that

_< f_ (_lV{I _+ v_{y.v{) (29)

_< Ilvll_,a, (vlV,,I2+ {y.v{) (30)
i

< Ilvll_,_,(_'l,'h,_,+ II{llo,_,llVlll{l_,_,)

< 2 2Ilvll_,_, +_ I{I],_,(_' I1,'11o,_,IlVll/l_l_,_,). (31)

I1_'11o,_,_<1,



2I_h,r_,= _/d,

where c2 is a constant, (31) then becomes

,1,,,,,,,_:_<t,,,11=,,,_ (1 + -LL__V/_777_)'/_, (32)
which is the conclusion of our lemma.

Now we are in a position to state the main result of this section.

Theorem 3.1 Let v be the solution of the first basic problem (12). If 7 is
suj_ciently small, we have

Ilvlhl2,r, <_ c,_(, + _-IIv II_av/_]-C--7_)'/_

( l lv)ezp(-kd2136)llgll-al_,r_,

where C1 and C2 are constants, with C1 depending only on d, u, 7 and _ , but
not oft T.

Proof of theorem 3.1

The proof of this theorem is based on the above lemmas. Since OBi C K,
We have

Ilvll=,os,_<Ilvlloo,S¢, (33)

The lemma 3.2 then implies

Ilvllo_,oB,_<c111.11o,.. (34)

Using the lemma 3.3 and the above estimate we obtain:

Iv(Mi)l < exp(-kd2136)cliiVi[o,_, VMi E f_i.

Consequently we have

Ilvll_o,.,___ezp(-kd2136)clllvllo,.. (35)

10



Applying thelemma3.1weobtain:

Ilvlloo,_,_ clc-'-''_°
//

exp(-kd2 /36)Ngll_x/_,r_.

The application of the lemma 3.4 then yields:

(36)

NvNl,cl <_ coc1_--_ (1 +_-_ d_-22) 1/2

(11v)ezP(-kd2136)llgll-1/:,rb.

To conclude we use the trace theorem which yields

11_111/2,r,___c311_11_,_.

Consequently, we have the final estimate:

(37)

+ IIVII d c2 1/2Ilvlll/_,r, _< CoClC3 c_Ud(1 ---;-- d_!_2)

( l lv)exp(-kd 2136 )NgN_x/2,rb,

which corresponds to our theorem with C1 = CoClC3 and C2 = c2.

4 Second fundamental estimate

In this section we shall derive an estimate of the solution of the following
Direchlet problem:

1
£v = -vAv + V. Vv + -v in _loc, (38)

7-

v = h, on ri, (39)

v = 0, on rb, (40)

where the function h is given in Ha/2(Fi), the coefficient v is strictly positive,

and v is the diffusion coefficient. The velocity field V is given by the relation

(5). Let W be the sub-space of Hl(_zoc) defined by

11



F b

Figure 1: Description of the Domain _loc and of the splitting used in the
majoration of the local solution.
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w = {w e Hl(n_oc)lw = 0 on rb}.

We then define the following bilinear forms in W:

a(v,w)=u_ Vv.Vw+_ div(Vv)w, (41)
lo¢ lo¢

(v,w) = _ vw, (42)
_o¢

with v and w in W. The second basic problem associated to (38)-(40)

corresponds to the following problem:
Find v E W such that

a(v, w) + (l/r)(v, w) =
Ov

, V_nnW , Vw E W, (43)

vlr, = h, (44)

where h is given in H1/2(Fi). We first have the following lemma ;

Lemma 4.1 For r su_ciently small, we have

a(w,w) + (llr)(w,w) > (,-'/2)11_11_,r2,<<,w e w.

Proof of lemma 4.1:

Under the hypothesis 1/r > v/2 + (1/2v)[[V[[_, and using the Cauchy-

Schwarz inequality, we obtain :

a(v,v)+(X/r)(v,v) = f_,_vVv.Vv+ f_V.Vvv+(1/r) f_ooV 2

____llVvHga+ (x/_)llvll_,2- IlYlloollVvllo,=llvllo,,

_> ,.'llVvlh_,2+ (lP-)llvll_,,2- (,-'/2)11Vv112>,2

-( 1/2,.,)IIVIILIlvllg,2

2
_> (,.,/2)(llVvll_,_+ Ilvllo,_).

13



We will also make the simplifying assumption (13 7. We first establish a

global estimate for the solution of the second basic problem.

Lemma 4.2 The solution v of the second basic problem (43)-(_4) satisfies:

Ilvlll,_,_ _<2(1 + -/--2) 1/2 (1 q-

Proof of lemma 4.2:

Choosing w = v in (43) we obtain :

v_ ] Ilhlll/2,r, (45)

/2_,oc WVl_+ f_, (d_v(Vv)v+ (1/7-)v2)= L, Ov/2_h. (46)

The lemma 4.1 then yields

2
[Ivlll,_,oc < 2110v/Onll-1/2,r,I]hl]x/_,r,. (47)

We shall now establish an estimate of IlOv/Onll-1/2x,. Combining (43) and
(5) we obtain:

_ = (w,w + (lp,)v.ww + _vw).
i loe /27"

Therefore, for any w in W, we have

<

<

IlWll0,.,o_llVwll0,_,_+ (ll.)llYlloollV_llo,_,o.llwllo,.,_

1
+--Ilvllo,.,o.ltwllo,_,_.

/27-

[1+

+ (1//22)IIVIILIIW,llg._._+ (11_,2)llvll?_...o.)_/2

2+ Ilwllo,_,o.+ (1/7-2)11_112o,_,_)_/2

(1 +
II-_VIl_)]a/211vllx.m.o.(a+ 7--2)1/211wllx.m,o_.

14



The tracetheoremthenyields

IlOvlOnll-_l_,r, <_(1 + T-_) _/2 (1 +
1 + ]lVn2oo'_ 1/2

(48)

Combining now the relations (47) and (48) we have

/

Ilvlll,_,o__<2(1 + r-2) 1/2 _1 +

and hence in particular

1 ÷ IIvIIL'_ 1/2
-_ ) Ilhlhm,r, (49)

1 + IIVIIL'_ 1/_Ilvll0,a,oo < 2(1 -I- r-2) 1/2 1 -I- Ilhlhl2,r,.
- _ )

(50)

Let Ky = B_I4(Y) be the sphere centered on y and of radius d/4, with y

belonging to Fv (see Figure 3). By construction, ry is the center surface of

_tloc and _i is the subdomain of width d centered on ry .

We have the following lemma:

Lemma 4.3 There exists a constant cl such that:

II_lloo,g--<e_llvllo,a,o_- (51)

Proof of lemma 4.3:

Following the same argument as in the proof of the lemma 3.2 we obtain:

Ilvlloo,gy_<elllvllo,a,o_, (52)

where cl is a constant depending only on d, v, 7 and 5. On the other hand

there exist Yl,..., Yl in Fti such that

1

ft2i = U B_(y) c U Ky_ = K.
YEll j=l

By applying the relation (52) to each K_, we obtain

15



F b

..rv
K

o°°O.°°°°
/_ ,°

fii

Figure 2: Description of the local domain f/loc and of the splitting used in

the majoration of the global solution.

IIvHoo,K <_ sup CljIIvllo,glla¢ = Cl]lVl]o,i-llo¢. (53)

j=l ..... l

Next we shall establish another local estimate for the solution of the second

basic problem (43)-(44). For any Mi E fti, we introduce (see Figure 3):

• a ball Bi centered on Mi and of radius d/6,

• the function vi = exp[k(r 2 - d2/36)]llvlloo,aB,.

We then have:

Lamina 4.4 The solution v of the second basic problem (48)-(44) satisfies:

Iv( Mi)l <_ exp[--kd2/36]lMIoo,aB,. (54)

Proof of lamina (4.4):

By construction of k (see the previous section), _(r, k) is positive for all

r e [0, d/6]. Then by following the same argument as in the proof of the

lemma 3.3 we obtain the inequality (54).

16



Let £_bbe the subdomainof _locdescribedin the Figure3. The H 1 global

estimate of the solution of the second basic problem, is obtained in the next
lemma.

Lemma 4.5 The solution v of the second basic problem (_3)-(4`_) satisfies:

IlVl,l,a_ua,< ,lvlloo,a,_ (1 + [,v,l_ d_)1/2_ _ (55)
/2

Proof of lemma (4.5):

Consider _ E Hl(rtloc), such that:

{_ = 1 in ab, (56)supp_ C £_b U fti

Choosing w = _2v in (43) we obtain :

+ div(Yv) + = (57)(-_,Av (VI_))_2V O.
foe

Similarly to the proof of the lemma 3.4 we obtain:

_'ll(vlll,aboa,_<£ (, v21v,,I+ v ev.ve).
Choosing _ such that

II¢llo,a,< 1

and

2
I,fh,a, = c2/d,

we finally obtain as in the proof of the lemma 3.4 the inequality (55).

Finally, the main result of this section is presented in the following the-
orem:

Theorem 4.1 For r sufficiently small, the solution v of the problem (4`3)-
(4,4) satisfies:

17



IlO,-'/Onll-1/_,r,,< c1_ (1 + 1 + IlYll_'_- _ )

_---\ 1121+ __liVlloo4die21
v ¥ - /'

(1 + llr2)exp(-kd2/36)llhl]1/2,r, , (58)

where C1 and C2 are constants with C1 depending only on d, v, u and 5.

Proof of theorem 4.1:

Since 0Bd C K by construction, the lemmas 4.3 and 4.4 imply:

II_II=,_,-<exp(-kd2136)e111_llo,_,_. (59)

Furthermore by using the lemma 4.2 it follows:

Ilvlloo,_, _ ()<2 1 + 1 +__ 1/2 (60)

c1(1 + 1/7"2)l/2exp(-kd2/36)l]h[ll/2,F,.

By using the lemma 4.5 we then obtain:

II'olll,a,,,..,a,< 2 (1 + 1 + II_VIIL'_
1/2

-- \ V2 ]

Cl V_-_ (1 .__ _ d_c--2) 1 / 2 (61)

(1 + 1/72)i/_exp(-kd2/36)llhlh/2,r,.

Before concluding we shall establish an estimate of the term

110./0_ll-l/:,rb.

Choosing w such that:

W E Hl(_loc), with w = 0 on Of_b N cO_d,

and using (43) we obtain:

18



_ (-_,Av d_v(Vv)+v/_)w =+ 0.
b

Applying the Green's formula and using (5), we obtain:

fr Ov j[ (VvVw+(X/u)V.Vvw+ 1--_-vw).
b -_nw _ b lIT

Similarly to the proof of the lemma 4.2 we obtain the following inequality:

/ 1/21 + IIVIIL\

IlOvlO_ll-,12,r_< (1 + 1ITS)'12(1 + I- _,_ ) Ilvll,,r_,,. (62)

The comp]etion of the proof of the theorem results from the combination of

the relation (61) with (62).

5 Convergence analysis of the explicit time march-

ing algorithm

Consider the following elliptic problem:

¢+V.V¢ uA¢ 0 inf/,

T

¢ = ¢oo on roo, (63)

¢ = 0 onFb,

that we would like to solve by the fundamental algorithm of [15]. This

algorithm can be written in this case as

• set ¢o __ ¢oloc Cot and = ¢o.

• then, for n _> 0, ¢_oe and ¢_ being known,

solve

A_n+l l/" _'7_h nq'l , Arh n+l

Wlo_ + , "--Wloc - ""'Clot - 0 in Ftloc,
T

,.kn+l = _nWloc on F i,

An+l'Clot = 0 On Fb,

(64)

19



¢,_+1 V-V¢ '_+1+ -vA¢ '_+1 = 0 inf,,
7"

= ¢oo onroo,

0¢n+1 _,_n+a
12_ = l]'Wl°c Oil rb.

On On

We shall show in this section that this algorithm converges, and the

converged solution corresponds to the solution of the initial problem (63).
More precisely we have the following theorem.

(65)

Theorem 5.1 Fort sufficiently small, ¢ being the solution of the stationary

problem (63), we have :

0¢
i) vV'toc converges to in H-1/2(Fb),On

ii) ¢_+1 converges to ¢ in H1/2(Fi),

iii) ¢,_+1 converges to ¢ in Hx(12),

iv) "_toc_'_+lconverges to ¢ in Hl(_toc).

Proof of theorem 5.1:

By the transformation ¢,_+1 __, ¢_+1 _ ¢ with ¢ the solution of the stationary

problem, this problem can be reduced to the case ¢_ = O. Multiplying the
equation in (64) by w E W, integrating by parts, we obtain:

/l..]thn+l /_ /_
"/"loc n+l n+l
--w + V.VCto c w + v Veto c Vw

loc T _ toe

JfF Dthn+l
V'¢lo c

=v _nn w, VwEW. (66)
i

We now apply the theorem 4.1 and we obtain

Wloc
-a/2,rb < c_-d 1 + _7(1 + IlVll_) (67)

2O



(1 + _llVIIo_d_=) 1/=

(1 + 1/r2)ezp(-kd=/a6)ll¢=lh/2,r_.

On the other hand, multiplying the equation in (65) by w E W and inte-

grating by parts we obtain the equality

V.Zoc (68)--w + V.V¢'_+lw + u V¢"+lVw = v w
T b

with w E Hl(f_) and w = 0 on roo. Applying the theorem 3.1 to this

problem yields:

ezp(-kd2136)llO¢'_+llOnll_:12,rb. (69)

Combinig (67) and (69), we then have:

n+lIIO¢_o_IOnli-ll2,rb < (1+ IIVIIL))

_ _/7777,_, "_:121+ ,,lllvll_ddl4)

<:_ (1+ _llYll=_) :/2

(1+ llr2)ezp -k_ IlO¢_clOnll-:i=,r_,

with k - ux/_" Therefore for r sufficiently small, the coefficient of reduction

will be dominated by the exponential term and will then be strictly less

than 1, implying the linear convergence to zero of

rt+lI10¢_o_IO_ll-:l=,C_.
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This corresponds exactly to the statement (i). This statement combined

with (69) leads to the convergence of ¢n+1 to 0 in H1/2(F_). Applying (14)
n+l

with g = 0¢zoc /On, we have in addition

Co n+l

I1¢_+_111,a< -fllaCtoc/0nll-1/2,r_,

and therefore I1¢n+llll,a converges to zero at the speed of ]10¢?+1/0nll_l/2,rb.
Applying now (45) with h = Cn, we also have

(1 1An+lll 1,_loc 2(1+ 1/_2)1/2 + _(1+ ,IvIIL) ']¢_$h/_,r,.<
Wloc

And then I]¢'_+11]1,_ also converges to zero at the speed of ]lCnlll/2,Fi.

5.1 Convergence of a fixed point method for the implicit

time marching algorithm

The implicit time marching algorithm of [15] couples the global and the local

problem. To uncouple them, it is advisable to use the fixed point algorithm
below :

• set =¢oI and = ¢o,¢?oc,0 ¢o

• then for k > 0 ,_,_+1 being known,- ' "_klri
solve

(_n+l

loc,k+ l -- ¢?oc
• n+l /jAA, n+I+div(vCtoc,k+l)- _w_oc,k+l = 0 in _to_,

(_n+lIo_,k+l = ¢_+1 on ri,

(_n+lloc,k+l = 0 Oil Fb,

(70)

Cn+l

k+l --

_7 "V n+l 'A_n+l - 0 in _,+ dl (vCk+l) - _'-'wk+l -

_n+lk+l = ¢_ on F_,

n+l n+l
v0¢k+ 1/0n = v0¢lo_,k+ 1/0n on Fb.

(71)
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Wewill studynowthe algorithm(70)-(71).By setting

= ¢,_+1 _ ¢,_+1_loc,k,q loc,k+l loc,q+l

= {,An+l -- ¢_+I),_)k,q kV"k

we have that ¢loc,k,q and Ck,q verify the following equations :

(72)

(73)

¢toc,k,qlAt + div(v¢loc,&q) - vA¢loc,k,q = 0 in _loc,
¢loc,k,q "_ Ck--l,q--1 on Fi,

_)loc,k,q = 0 on Fb,

(74)

Ck,q/At+div(v¢&q)- vACk,q = 0 in _,

Ck,q = 0 on r_,

0¢k,q 0¢lo_,k,q
_'--On - " On on rb.

(75)

If At is sufficiently small, we can apply the analysis of the previous

section to this algorithm and we conclude that Ck,q and CZoc,k,q converge
linearly to zero. Hence the sequences ¢,_+1 and ¢n+1k loc,k are Cauchy sequences,

which converge linearly to the unique solutions ¢n+1 and Czno+1 of the implicit

scheme. This guarantees the convergence of the above fixed point algorithm.
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Appendix

The main result of this section relies on the notion of a contact set. If u

is a continuous arbitrary function on _, the upper contact set, denoted F +

or F+, is the sub-set of _, defined by

r+ = {y e a, 3p(y) e re"suchthat u(x) <_ u(y) + p. (x - y) Vx e _ ).

(76)
We see that u is a concave function on _ iff F + = _/. When u E Ci(f_)

we must have p = Du(y) in the relation (76). In addition, when u E C2(_),

the Hessian matrix D2u = [D_ju] is negative on F +. In general, F + is dosed
in _.

If u is a continuous arbitrary function on _, we define the "normal

mapping" X(Y) = X_(Y) at point y E _ by

x(v) = {p < + - y) w a}. (77)

We can see that X(Y) is non empty iff y E F+. In addition when u E C1(_),

we have X(Y) = Du(y) on F+; in other words X is the gradient field of u on
F + .

As a particular case of the Bakelman-Alexandrov ([8] and [9]) maximum

principle, we have under the above notation.

Lemma .i For u E C2(_) N C°(_l), we have :

sup u < supo_u + d- _ IIaiJD_ju/l)*[i,_,r +
?l Wn

with d the diameter of _ and w,_ the volume of a unit sphere in R _.

For further details see [12].

We now proceed to the proof of Theorem 6.1, by following the steps of

[12]. We take/_ = B1 (0) and the general case will be deduced by considering

the coordinate transform, x ---, _ = (x - y)/2R.

We will begin, in first step, by showing this result for u E C2(_)N

W2"_(f2) and then in a second step we will deduce the result for u E W2'n(_).

Step 1:
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Wesupposethat u E C2(_) N W2,n(fl). For/3 _> 1, we consider the cut

off function _7defined by

_(_) = (1 -1_]2) z.

By differentiation, we obtain

b_, = -2Z_(1 -1_12)z-l,

b_jV = -2flhij(1 -]_12) _-1 + 4fl(fl - 1)_j(1 -1_12) z-2.

By setting

we then obtain

.. ^

h '3 Dij v

V "-- _U,

= _aiJf)iju -F 2fiiJDoT_)ju -F uaiJDij_7

> ,1(] - b_b_u- eu) + 2dJb_,Tbju + ua_Jb_j_.

Let F+ = F+ be the upper contact set v, in the sphere/_ ; we have :

u > 0 on F+.

If x E 0/3 such that p.(x - y) < 0 we indeed have v(x) = 0. Consequently

v(y) + p.(x - y) > v(x) = 0.

Moreover, using the concavity of v on F +, we can estimate the following

quantity :

Ibul = (1/_)lbv - ub_l.

Indeed,

Ibu _< (l/r/)( Dv[ + u Dr/)

V
-- + ,.,lb_l)_< (1/,7)(-__I_1

_< 2(1 + 13)71-1/_u.

In that way, we have on F+ the following inequality :
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-a_Jb_jv < {(16Z_+ 2n_)£_-2/_+

2nlbl,7-_/n+ e}v+ ,till.

Since 6 < 0, we deduce the inequality

-a;_b_jv < {(1682+ 2_/9)h_-_/z +

2/91&In-_la}_+ nl]l

-< c1,_-m_ + I]1,

with cl = c(n,/9, 7, 6) independent of 6.

Consequently, by applying Lemma 6.1 on/_, we obtain, for/9 > 2 :

d 1 - 2_
s_p,, < (_)(_--:)llc,,_n- / _ + I]III,,,_.
B nWn L;

By using the relation (2), it comes

^ d 1 ^

supvB _ (--d_/.)c,ll,7-m,,ll,,,_+ (_)(_)llfll_,_,_.

-< cid(IIn-2/%II,,,e+ 01_)II]II.,e)

___c_d(IIn-m,,+II,,,B+ (II_)II]II.,B)

-< cid((_,_p,,+)'-=/zII(,_+)2/ZlI,,B+ (U_)II]II,,,_),

where Cl is a constant depending only on n,_,7 and _. Here,

diameter of/}(d = 2).

By usingthe Young inequalityunder the form

ab < za q + e-"lqb"

for q ---- (1 -- 2//9) -1 and r =/9/2, we have

(_p_+)_-mll(_+)_/Zll,_,_ <__p_+ + E'-Z/_ll(_+)mll_(_, v_ > o.

By taking e -
1

. and plugging in our inequality on v, we obtain :
2cld

(78)

d is the
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<_ (ll2)s_.p_+ + (ll2)_-nl2(_,d)nl211(_+)2inll_/_ (79)supv
D

+(c,d/i)ll]ll_,s.

We want to prove the theorem for all p > 0. We will treat separate]y

the cases p < n and p > n.

If p _< n, we set/3 = 2niP. In this case we have

I1(_+)2/zll_i; = I1(_+)llp,B.

Plugging this in our inequality on v, we obtain :

(1/2) supv< (ll2)'-nl2(cld)nlill(u+)llp,D + (cldli)ll]ll,,,D.
D

Consequently, we obtain the following inequality ;

supv < _.{(fB(_+)P)'/P + (dl2i)ll]ll,,,_ }.

On the sphere Bll2(0), the cut off function satisfies

1/7 < (1/2)n.

It follows, then

sup _ _< sup (v/'D
Bll2{ O) Bll2(0)

Finally we end up at the desired estimate

sup u < c3{(iD(u+)t_)llp Jr (d/2A)llfll_,a}.
B_I2(O)

for u in W2"_(f_)N C2(_). The constant c3 above depend only on n,/7, 7 and

_, but is independent of _.
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On the otherhandif p > n, we have :

2n/B < p, VB> 2.

Then, it follows (by assuming/3 _> 2)

IBI-i/(_"/_)II(,,+)II_,,/_,B< IBI-I/PlI,.,+IIp._.
But

ilu+ll2,v_ u+ _ln hi2=11( ) II,,,D,

and therefore, by processing as before, we obtain the desired estimate

sup _ _<_4{(ID(_+),')'/p + (,2/2J)II]II,,,D}
Bl12(O)

for u in W2'n(f/) rq C2(_). The constant c4 above depends only on n,/3,7
and _, but is independent of &

Transformation _ --+ x.

By construction, bij = R-2Dij, thus J = R-2_ and _ = _R 2.

addition, we have [BI = w,(2R) '_ and Iglp,_ = R-'_/PIgIp,B.
Written in term of x, the last inequality becomes

In

,-, 1/n ,-,
.. 2nWn f ,_wn 1"_

sup u _< c4{(_lDi JB(U+)Pdx)llp + ( _ )IlYlI,,,B},B_y)

with c4 a function of n, 7, _ = 5R2 and p. This is the desired estimate for

_,_ w2,"(_) n c°(_).
Step 2:

Now, let u E W2"_(f_). By density, let (u,n) be a sequence of functions

of C2(j_), converging towards u in W2'n(B). The injection of W2,n(B) in

C°(B) is continuous, consequently (u,_) converges uniformly towards u in
B. We have

Lu,_ = L(um - u) + Lu

>_ f + i(Um - U).
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By setting, fm= L(u,_ - u), we observe by construction that f,_ con-

verges towards 0 in L_(f/). As Um 6 W2'_(a) N C2(£/) and ],_ = f +fm is

in L'_(£/), the estimate (3) is valid also for urn, so that we have

sup _m < (u+)p)llP+ II/lln,B). (80)
B_(_) - cte{(-_l

Using previous results and taking the limit, we have :

sup_<_._( 1 j (_+),,)1/,,+ _IIS'II:,,)-
BR(y) --

Observe a/sothat by replacingu by -u_ the theorem can be extended

easilyto the caseof supersolutionsand so]utionsofthe equation :

Lu = .1:.

31



Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

Public reporting burden for this collection of information is eslimated to average ] hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information,including suEgestions for reducing this burden, to WashinlFon Headquarters Services, Directorate for Information Operations and Reports, ]215 Jefferson
Davis Highway, Suite 1204, Arlin_on, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018S). WashinKlon, DC 20503

1. AGENCY USE ONLY(Leave blank) 2, REPORT DATE 3, REPORT TYPE AND DATES COVERED

July 1996 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MAXIMUM PRINCIPLES AND APPLICATION TO THE

ANALYSIS OF AN EXPLICIT TIME MARCHING ALGORITHM

6. AUTHOR(S)
Patrick Le TaUec

Moulay D. Tidriri

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 96-45

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-201584

ICASE Report No. 96-45

I II. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
To be submitted to SIAM Journal on Mathematical Analysis.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this paper we develop local and global estimates for the solution of advection-diffusion problems. We then study

the convergence properties of a Time Marching Algorithm solving advection-diffusion problems on two domains using

incompatible discretizations. This study is based on a De-Giorgi-Nash maximum principle.

14. SUBJECT TERMS

advection-diffusion; time marching algorithm;

De-Giorgi-Nash theory; fixed point method

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

lS. NUMBER OF PAGES

33

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std 739-18
'_OR_ 1 n')


